2m/CHE-150 (Th) Syllabus-2023

2025

(May-June)

FYUP: 2nd Semester Examination

CHEMISTRY

(Minor)

[Part—A (Theory)]
(Introductory Chemistry—II)

(CHE-150)

Marks : 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

(Inorganic Chemistry—II)

(Marks: 19)

- 1. (a) Derive the first-order rate equation of a radioactive disintegration.
 - (b) Half-life of radium (molar mass = 226 g mol⁻¹) is 1580 years. Show that 1 g of radium gives 3.70×10¹⁰ disintegration per second.

(c) What is nuclear fusion? Give example.

(d) Balance the following reaction by ionelectron method:

 $\begin{array}{l} MnO_4^- + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2 \\ \text{(Acidic medium)} \end{array}$

(e) Assign oxidation number to the underlined elements in each of the following species:

- (i) NaBH₄
- (ii) $Na_2S_2O_3$
- (f) Identify the oxidant and reductant in the following reaction:

 $2\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3+\mathrm{I}_2\rightarrow\mathrm{Na}_2\mathrm{S}_4\mathrm{O}_6+2\mathrm{NaI}$

OR

- 2. (a) Calculate the packing fraction of argon isotope ⁴⁰₁₈ Ar. Mass of the isotope of argon = 39.962384 amu. What does the value of packing fraction imply?
 - (b) Write notes on any two of the following:

1½×2=3

2

1

1

2

- (i) Natural radioactivity
- (ii) Group displacement law
- (iii) Artificial radioactivity

D25/1205

(Continued)

(c) Justify that the following reaction is a redox reaction:

$$2 \operatorname{FeSO}_4 + \operatorname{H}_2 \operatorname{SO}_4 + \operatorname{H}_2 \operatorname{O}_2 \rightarrow \\ \operatorname{Fe}_2 (\operatorname{SO}_4)_3 + 2 \operatorname{H}_2 \operatorname{O}$$

- (d) Calculate the equivalent weight of $K_2Cr_2O_7$ in acidic medium.
- (e) Define the electronic concept of oxidation reaction.
- 3. (a) How is the concept of solubility product used in the group separation of cations?
 - (b) Distinguish between iodometry and iodimetry.
 - (c) Define acid and base on the basis of Brönsted-Lowry concept.
 - (d) Identify Lewis acids and Lewis bases in the following reactions:

(i)
$$\operatorname{FeCl}_3 + \operatorname{Cl}^- \to [\operatorname{FeCl}_4]^-$$

(ii) $PH_3 + NH_3 \rightarrow [H_3PNH_3]$

1

3

2

2

2

(e) Given the pK_a values of each, which is a strong acid, H_2SO_4 ($pK_a = -1$) or H_2SO_3 ($pK_a = 1.9$)?

OR

- **4.** (a) Write the expression for solubility product (K_s) of a sparingly soluble salt A_xB_y . Calculate the solubility product of Ag_2CrO_4 , given that its solubility is 2.5×10^{-2} per litre and its molar mass is 332 g/mol.
 - (b) How does molarity differ from molality? An aqueous solution is prepared by dissolving 4 g of NaOH to give 500 ml of it. Calculate the molarity of the solution.
 - (c) On the basis of HSAB principle, predict the stability of the products in the following reactions:

(i)
$$Ag^+ + 2I \rightarrow AgI_2$$

(ii)
$$Ag^+ + 2F^- \rightarrow AgF_2$$

- (d) How are pK_a and pK_b related to the strength of acids and bases?
- (e) What are levelling and differentiating solvent? Give example of each. 1+1=2

D25/1205

(Continued)

2

2

1

UNIT-II

(Organic Chemistry—II)

(Marks: 18)

- 5. (a) Draw the Newman projection formula of the fully eclipsed conformation of 2,3dibromobutane.
 - (b) Assign E/Z configuration to the following molecules: $1 \times 2 = 2$

(i)
$$\begin{array}{c} & \text{Br} \\ \text{CH}_2\text{CH}_2\text{Br} \\ & \text{CH}_2\text{CH}_2\text{Br} \end{array}$$

(c) Write the R- and S-configurations of the following molecules: 1×2=2

(i)
$$H \xrightarrow{CH_3} OH$$
 C_2H_5

(d) Taking suitable example, write the mechanism of E¹cB reaction.

2

1

(e) Write the major and minor products of the following reaction:

$$\begin{array}{c}
\text{CH}_{3} \\
\text{CH}_{3} \\
\text{CH}_{2} \\
\text{CH}_{2} \\
\text{CH}_{3}
\end{array}
\xrightarrow{\text{KOH}} A + B$$

OR

- **6.** (a) What are meso-compounds? Explain using tartaric acid as example.
 - (b) Identify the chiral molecules from the following:
 - (i) CH₃CHBrCH₃
 - (ii) CH₃CBr₂CH₃
 - (iii) CH₃CHOHC₂H₅
 - (c) Draw the isomers of the following compounds: 1×2=2
 - (i) $CH_3(CI)C = C(CI)CH_3$
 - (ii) CH₃CH(OH)CHO
 - (d) Illustrate E₂ elimination reaction with the help of an example.
 - (e) Complete the following reaction:

$$\begin{array}{ccc} & \overset{\bullet}{\text{NMe}_3} & \overset{\bullet}{\text{NMe}_3} \\ \text{H} & \overset{\bullet}{\text{C}} & \overset{\bullet}{\text{C}} & \overset{\bullet}{\text{CH}_3} & \overset{\bullet}{\text{Ag}_2\text{O}} \\ & \overset{\bullet}{\text{CH}_3} & \overset{\bullet}{\text{H}} & \overset{\bullet}{\text{A}} & \overset{\bullet$$

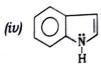
D25/1205

(Continued)

7. (a) Using Hückel's rule, identify the aromatic and non-aromatic compounds from the following:

1

2


1

2

1

(ii)

(iii) 点

(b) Write the products when the following compounds are subjected to nitration:

 $1 \times 2 = 2$

1

2

2

1

- (i) Chlorobenzene
- (ii) Benzaldehyde
- (c) Write the reaction for the Friedel-Crafts acylation of benzene.
- (d) Explain how steric factors affect the rate of S_N2 reaction.
- (e) Complete the following reaction with mechanism:

$$C_6H_5$$
 C—OH $\xrightarrow{SOCl_2}$?

What is an ambident nucleophile? Give example.

(Turn Over)

D25/1205

OR

8. (a) Write the product and mechanism of the following reaction:

$$C_6H_6 + HCN + HCl \xrightarrow{ZnCl_2} ?$$

(b) Discuss the directive influence of nitrogroup on the electrophilic substitution reaction of benzene.

(c) Draw the molecular orbital picture of benzene.

(d) Complete the following reaction with mechanism:

$$\begin{array}{c} CH_3 \\ \downarrow \\ CH_3 \end{array} \xrightarrow{OH} ?$$

(e) Write the products obtained when haloalkanes react with the following:

(i) KCN

(ii) AgCN

(f) What is neighbouring group participation in nucleophilic substitution?

1

2

2

2

1

2

D25/1205

(Continued)

UNIT-III

(Physical Chemistry-II)

(Marks: 19)

 (a) State the first law of thermodynamics and write the mathematical expression.

1+1=2

2

(b) 10 moles of an ideal gas expand reversibly and isothermally from initial pressure of 1 atm to final pressure of 0·1 atm at 0 °C. Calculate the work done. Given, R = 8·314 JK⁻¹ mol⁻¹.

(c) Define extensive and intensive variables with example for each. 1½+1½=3

(d) What is heat capacity? Derive thermodynamically $C_P - C_V = R$ for 1 mole of an ideal gas. 1+2=3

OR

10. (a) Write notes on the following:

 $1 \times 2 = 2$

(i) Closed system

(ii) Isochoric process

(b) 3 moles of an ideal gas $(C_V = 5 \text{ cal deg}^{-1} \text{ mol}^{-1})$ at 10 atm and 0 °C are converted to 2 atm at 50 °C. Calculate ΔE and ΔH for the change. (Given, $R = 1.987 \text{ cal deg}^{-1} \text{ mol}^{-1}$) 1+1=0

D25/1205

(Turn Over)

(c)	Derive an expression for work done in an isothermal reversible expansion of an ideal gas.
(d)	
(a)	What are exothermic and endothermic reactions? Give one example for each. 1+1=2
(b) (c)	The heat of combustion of ethyl alcohol (C ₂ H ₅ OH) is 1380 kJ mol ⁻¹ . If the heat of formation of CO ₂ and H ₂ O are 394.5 kJ mol ⁻¹ and 286.6 kJ mol ⁻¹ respectively, then calculate the heat of formation of ethyl alcohol.
	OR
(a)	State and explain Hess' law of constant heat summation.
(b)	Calculate ΔH° for the reaction
	$CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$
	given that $\Delta H_{\rm f}^{\circ}$ for ${\rm CO_2(g)}$, ${\rm CO(g)}$ and ${\rm H_2O(g)}$ are $-393.5~{\rm kJ~mol}^{-1}$,

(c)	Give three p	points of differences between on and chemisorption.	3
(d)	What is ads	sorption isotherm?	1

		ma ma Syllahus-2	023
25—	1500 /1205	2m/CHE-150 (Th) Syllabus-2	

-111⋅3 kJ mol⁻¹

respectively.

11.

12.

3

D25—1500**/1205**

and $-241.8 \text{ kJ mol}^{-1}$